

1040/1020/1064~1120nm PM WDM for Pulse Power

FEATURES

- High Isolation
- Low Insertion Loss
- Epoxy-Free Optical Path
- High Reliability and Stability
- Low Profile Packaging

APPLICATIONS

- **Broadband Systems**
- Optical Amplifying Systems
- Telecommunication Networks
- Metro Networks
- **CATV Networks**

SPECIFICATIONS

Pass Channel Wavelength Range $\lambda 1$ nm 1040 ± 5 Reflective Channel Wavelength Range $\lambda 2$ nm 1020 ± 5 , 1064 ± 10 , 1070 ± 10 1080 ± 10 , 1092 ± 5 , 1120 ± 5 Insertion Loss over $\lambda 1$ @ Pass Channel dB ≤ 1.0 ≤ 1.2 Insertion Loss over $\lambda 2$ @ Reflective Channel dB ≤ 0.8 Configuration $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	arameters		Unit	Standard	High ER Type		
Reflective Channel Wavelength Range $\lambda 2$ nm $1080\pm10,1092\pm5,1120\pm5$ Insertion Loss over $\lambda 1$ @ Pass Channel dB ≤ 1.0 ≤ 1.2 Insertion Loss over $\lambda 2$ @ Reflective Channel dB ≤ 0.8	ass Channel Waveleng	gth Range λ1	nm	1040±5			
Insertion Loss over $\lambda 1$ @ Pass Channel dB ≤ 1.0 ≤ 1.2 Insertion Loss over $\lambda 2$ @ Reflective Channel dB ≤ 0.8 Configuration $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Deflective Channel Wayslangth Dange 12		nm	1020±5, 1064±10, 1070±10			
Insertion Loss overλ2 @ Reflective Channel dB ≤0.8 Y Type - 3-port X Type - 4-port (2x2 WDM) Isolation over λ1 @ Reflective Channel dB ≥12 Isolation over λ2 @ Pass Channel dB ≥25 Optical Return Loss dB ≥50	enective Chamilei wav	reierigtii Karige Az	11111	1080±10, 1092±5, 1120±5			
	nsertion Loss over λ1	@ Pass Channel	dB	≤1.0 ≤1.2			
Configuration X Type - 4-port (2x2 WDM) Isolation over $λ1$ @ Reflective Channel dB ≥12 Isolation over $λ2$ @ Pass Channel dB ≥25 Optical Return Loss dB ≥50	nsertion Loss overλ2 (Reflective Channel	dB	≤0.8			
X Type - 4-port (2x2 WDM) Isolation over λ1 @ Reflective Channel dB ≥12 Isolation over λ2 @ Pass Channel dB ≥25 Optical Return Loss dB ≥50	Configuration	Y Type	-	3-port			
Isolation over $λ2$ @ Pass Channel dB ≥25 Optical Return Loss dB ≥50	onnguration	X Type	-	4-port (2x2 WDM)			
Optical Return Loss dB ≥50	solation over λ1 @ Re	flective Channel	dB	≥12			
	solation over λ2 @ Pa	ss Channel	dB	≥25			
Extinction Ratio dB ≥18 ≥20	Optical Return Loss			≥50			
	xtinction Ratio		dB	≥18	≥20		
PM980 Fiber, PM1060L Fiber (E) or PM1060L-FA Fiber (Fiber Type			PM980 Fiber, PM1060L Fiber (E) or PM1060L-FA Fiber (L)			
Fiber Type - 10/125um PMDC Fiber (O) or 15/130um PMDC Fiber (V				10/125um PMDC Fiber (O) or 1	5/130um PMDC Fiber (W)		
20/130um PMDC Fiber (Q) or 25/250um PMDC Fiber (F				20/130um PMDC Fiber (Q) or 25/250um PMDC Fiber (
Polarization Alignment - Slow Axis	olarization Alignment		-	Slow Axis			
Fiber Tensile Load N 5	iber Tensile Load		N	5			
Max. Average Optical Power W 0.3, 0.5, 1, 2, 3, 5, 10, 15, 20	lax. Average Optical F	Power	W	0.3, 0.5, 1, 2, 3, 5, 10, 15, 20			
Max. Peak Power for pulse kW 0.1, 1, 2, 3, 5, 10, 15, 20	Max. Peak Power for pulse			0.1, 1, 2, 3, 5, 10, 15, 20			
Operating Temperature °C 0~50	perating Temperature	2	°C	0~50			
Storage Temperature °C -40~85	torage Temperature		°C	-40~85			
Stainless Steel Tube (SST) mm (Ø)5.5x35 (≤5W); (Ø)6.0x48 (5~10W)	ackago Dimonsion	Stainless Steel Tube (SST)	mm	(Ø)5.5x35 (≤5W); (Ø)6.0x48 (5~10W)			
Package Dimension Metal Box	ackage Dimension	Metal Box	mm	(L)90x(W)12x(H)10 (>10W); (L)120x(W)12x(H)10 (≤1			

Note: 1. Specifications are for device without connectors; Specifications may change without notice.

- 2. To add connectors, IL is 0.5dB higher, RL is 5dB lower, ER is 2dB Lower, Connector key is aligned to slow axis.
- 3. Only guarantee 1W continuous wave (CW) power thru testing for connectors added.
- 4. Devices for higher optical power or with other type fiber or consigned fiber are also available; Devices can only work in the core of Double Cladding (DC) Fiber, Cladding Power must be stripped before connecting the device.
 - 5. High ER type can only work in slow axis at pass port.

ORDERING INFORMATION (PN)

FPWM-NN	NN	- C	(C)	C -I	I NN	P NN	- (C)	С	С	NN -	CC/CCC
Ref Wavelength	Pass Wavelength	Ref. Fiber	Ref. Fiber2	Туре	Average Power	Peak Power	Package	Fiber Type	Fiber Sleeve	Fiber Length	Connector Type
<mark>02=</mark> 1020nm	40=1040nm	P= Same Fiber	P= Same Fiber	H=High ER	<mark>03=</mark> 300mW	<mark>01</mark> =100W	M=Metal Box	2=PM980Fiber	B= Bare Fiber	<mark>05=</mark> 0.5m	N=Without Connector
<mark>06=</mark> 1064nm		S= Corr. SM Fiber	S= Corr. SM Fiber	S=Standard	1- 1W	1= 1kW	<i>Blank</i> for SST	E=PM1060L Fiber	L= Loose Tube	10=1.0m	FC/APC=FC/APC Connector
<mark>09=</mark> 1092nm			<i>Blank</i> for Y Type		10-10W	10-10kW	or >10W	Q= 20/130 PMDC Fiber	2=2mm Cable	15=1.5m	LC/PC =LC/PC Connector
<mark>12=</mark> 1120nm					20-20W	20-20kW		R=25/250 PMDC Fiber	3=3mm Cable	20=2.0m	SC/UPC=SC/UPC Connector

